probflow
latest

Contents:

  • User Guide
  • Examples
    • Linear Regression
    • Logistic Regression
    • Fully-connected Neural Network
    • Poisson Regression (GLM)
    • Robust Heteroscedastic Regression
    • Censored Time-to-Event Model
    • Multivariate Regression
    • Neural Linear Model
    • Mixed Effects / Multilevel Models
    • Autoregressive Models
    • Bayesian Correlation
    • Gaussian Mixture Model
    • Stochastic Volatility Model
    • Normalizing Flows
    • Probabilistic PCA
    • Latent Dirichlet Allocation
    • Entity Embeddings
    • Neural Matrix Factorization
    • Batch Normalization
    • Mixture Density Network
    • Variational Autoencoder
    • Generative Adversarial Network
  • API
  • Developer Guide
  • Backlog
probflow
  • Docs »
  • Examples
  • Edit on GitHub

ExamplesΒΆ

Here are some examples of how to use ProbFlow to build, fit, and diagnose several different types of Bayesian models:

  • Linear Regression
  • Logistic Regression
  • Fully-connected Neural Network
  • Poisson Regression (GLM)
  • Robust Heteroscedastic Regression
  • Censored Time-to-Event Model
  • Multivariate Regression
  • Neural Linear Model
  • Mixed Effects / Multilevel Models
  • Autoregressive Models
  • Bayesian Correlation
  • Gaussian Mixture Model
  • Stochastic Volatility Model
  • Normalizing Flows
  • Probabilistic PCA
  • Latent Dirichlet Allocation
  • Entity Embeddings
  • Neural Matrix Factorization
  • Batch Normalization
  • Mixture Density Network
  • Variational Autoencoder
  • Generative Adversarial Network
Next Previous

© Copyright 2019, Brendan Hasz Revision 27fade8d.

Built with Sphinx using a theme provided by Read the Docs.